4.5 Shannon's Coding theorem

4.42. Shannon's (Noisy Channel) Coding theorem [Shannon, 1948]

(a) Reliable communication over a (discrete memoryless) channel is possible if the communication rate R satisfies R < C, where C is the channel capacity.

In particular, for any R < C, there exist codes (encoders and decoders) with sufficiently large n such that

$$P\left(\mathcal{E}\right) \le 2^{-n \times E(R)},$$

where E(R) is

- a positive function of R for R < C and
- completely determined by the channel characteristics
- (b) At rates higher than capacity, reliable communication is impossible.
- 4.43. Significance of Shannon's (noisy channel) coding theorem:
- (a) Express the limit to reliable communication
- (b) Provides a yardstick to measure the performance of communication systems.
 - A system performing near capacity is a near optimal system and does not have much room for improvement.
 - On the other hand a system operating far from this fundamental bound can be improved (mainly through coding techniques).

4.44. Shannon's nonconstructive proof for his coding theorem

- Shannon introduces a method of proof called **random coding**.
- Instead of looking for the best possible coding scheme and analyzing its performance, which is a difficult task,

• all possible coding schemes are considered

- * by generating the code randomly with appropriate distribution
- \circ and the performance of the system is averaged over them.

- $\circ\,$ Then it is proved that if R < C, the average error probability tends to zero.
- Again, Shannon proved that
 - \circ as long as R < C,
 - $\circ\,$ at any arbitrarily small (but still positive) probability of error,
 - \circ one can find (there exist) at least one code (with sufficiently long block length n) that performs better than the specified probability of error.
- If we used the scheme suggested and generate a code at random, the code constructed is likely to be good for long block lengths.
- No structure in the code. Very difficult to decode

4.45. Practical codes:

- In addition to achieving low probabilities of error, useful codes should be "simple", so that they can be encoded and decoded efficiently.
- Shannon's theorem does not provide a practical coding scheme.
- Since Shannon's paper, a variety of techniques have been used to construct good error correcting codes.
 - The entire field of coding theory has been developed during this search.
- Turbo codes have come close to achieving capacity for Gaussian channels.